3.93 \(\int \sqrt{c+d \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x)) \, dx\)

Optimal. Leaf size=155 \[ -\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}-\frac{\sqrt{c+i d} (B-i (A-C)) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f} \]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/f) - ((B - I*(A - C))*Sqrt[c
 + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/f + (2*B*Sqrt[c + d*Tan[e + f*x]])/f + (2*C*(c + d*Ta
n[e + f*x])^(3/2))/(3*d*f)

________________________________________________________________________________________

Rubi [A]  time = 0.305837, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {3630, 3528, 3539, 3537, 63, 208} \[ -\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}-\frac{\sqrt{c+i d} (B-i (A-C)) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2),x]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/f) - ((B - I*(A - C))*Sqrt[c
 + I*d]*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/f + (2*B*Sqrt[c + d*Tan[e + f*x]])/f + (2*C*(c + d*Ta
n[e + f*x])^(3/2))/(3*d*f)

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right ) \, dx &=\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f}+\int (A-C+B \tan (e+f x)) \sqrt{c+d \tan (e+f x)} \, dx\\ &=\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f}+\int \frac{A c-c C-B d+(B c+(A-C) d) \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx\\ &=\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f}+\frac{1}{2} ((A-i B-C) (c-i d)) \int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx+\frac{1}{2} ((A+i B-C) (c+i d)) \int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx\\ &=\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f}-\frac{(i (A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 f}+\frac{((A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 f}\\ &=\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f}-\frac{((A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{d f}+\frac{((i A+B-i C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{d f}\\ &=-\frac{(B+i (A-C)) \sqrt{c-i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}-\frac{(B-i (A-C)) \sqrt{c+i d} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{2 B \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 C (c+d \tan (e+f x))^{3/2}}{3 d f}\\ \end{align*}

Mathematica [A]  time = 0.552001, size = 150, normalized size = 0.97 \[ \frac{-3 i d \sqrt{c-i d} (A-i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )+3 i d \sqrt{c+i d} (A+i B-C) \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )+2 \sqrt{c+d \tan (e+f x)} (3 B d+c C+C d \tan (e+f x))}{3 d f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2),x]

[Out]

((-3*I)*(A - I*B - C)*Sqrt[c - I*d]*d*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]] + (3*I)*(A + I*B - C)*Sq
rt[c + I*d]*d*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]] + 2*Sqrt[c + d*Tan[e + f*x]]*(c*C + 3*B*d + C*d*
Tan[e + f*x]))/(3*d*f)

________________________________________________________________________________________

Maple [B]  time = 0.128, size = 1472, normalized size = 9.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x)

[Out]

2/3*C*(c+d*tan(f*x+e))^(3/2)/f/d+2*B*(c+d*tan(f*x+e))^(1/2)/f+1/4/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/
2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+1/4/d/f*ln((c+d*tan(f*x+e))^(1/2
)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2
)-1/4/d/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*A*(2*(c^2+d^
2)^(1/2)+2*c)^(1/2)*c-1/4/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(
1/2))*B*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-
2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A+d/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d
^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*C+d/f/(2*(c^2+d^2)^(1/2)-2*c)^(1
/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*A-d/f/(2*(c
^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*
c)^(1/2))*C-1/4/d/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*A*
(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)+1/4/d/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1
/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*A*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*c+1/4/d/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(
1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)-1/4/d/f*ln
(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c
)^(1/2)*c-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2
*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*(c^2+d^2)^(1/2)+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1
/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*c-1/4/d/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^
2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)+1/4/d/
f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*C*(2*(c^2+d^2)^(1/2)
+2*c)^(1/2)*c+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2)
)/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*(c^2+d^2)^(1/2)-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2
)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*B*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A\right )} \sqrt{d \tan \left (f x + e\right ) + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x, algorithm="maxima")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*sqrt(d*tan(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c + d \tan{\left (e + f x \right )}} \left (A + B \tan{\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)**2),x)

[Out]

Integral(sqrt(c + d*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \tan \left (f x + e\right )^{2} + B \tan \left (f x + e\right ) + A\right )} \sqrt{d \tan \left (f x + e\right ) + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2),x, algorithm="giac")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*sqrt(d*tan(f*x + e) + c), x)